UAV DESIGN AND CONFIGURATION AERODYNAMICS - AN ADE EXPERIENCE

N. Balachandran
Head
Aerodynamics Division
Aeronautical Development Establishment
Defence Research and Development Organisation
New Thippasandra Post
Bangalore-560 075, India
Email : mnchandran@ade.drdo.in

Abstract

UAVs are becoming an essential part of the modern defense forces world over in the recent years. They are widely used for surveillance, reconnaissance, target for missiles and combat. They are available in various weight classes from few kilograms to tons. Apart from design of aircraft, establishing an accurate aero data base for control law design for the aircraft is a main challenge in itself. Aeronautical Development Establishment (ADE) is involved in the design and development of many UAVs for the last 30 plus years and has experienced several challenging design and engineering problems. Over the years, various UAVs like Ulka, Sparrow, Lakshya, and Nishant for different mission requirements have been designed and developed. The evolution of design methodology in ADE and the present configuration design activities of UAVs and aircraft stores separation studies with a focus on CFD are discussed in this paper.

Introduction

Aeronautical Development Establishment (ADE) is one of the leading organizations engaged in air vehicle design in the country. For any efficient aircraft design activity, several disciplines of engineering and technology have to synergistically combine their efforts to evolve a final design of an aircraft which is then flight tested several times to fine tune the design. The final proven design would evolve into a serial production of aircraft. The aerodynamic design of UAV configurations is more challenging as they have complex requirement of various payloads integration with the aircraft configuration apart from the regular shape and layout optimization. ADE has over thirty years of experience in UAV design. The configuration aerodynamics is one of the core competencies of Aerodynamic Division of ADE. The present paper focuses on the current UAV design activities of Rustom-II, a MALE UAV and aerodynamic analysis of other configurations.

UAV Design Philosophy

The typical aircraft life-cycle phases are Research, Development, Testing and Engineering Phases (RDTE), Acquisition Phase, Operation Phase and Retirement Phase (Fig.1). The initial activity, whose associated cost is substantially lesser than the other phases, actually determines the success or failure of the project and determines the other activities.

Aircraft design is a very complex and iterative process. The design of a new aircraft is carried out with plenty of justified assumptions with verification and validation of the analysis carried out at various stages of design. The fidelity level of the aerodynamic model increases with the time from concept to flight. To carry out the UAV design effectively, ADE has adopted a spiral model in which the design effort spirals in towards the best possible design. The configuration that is being designed will be refined with the feedback from various aerodynamic experts with reviews before the first flight test. The ideal aircraft design spiral model is shown in Fig.2. The general phases of aircraft design are:

- Conceptual design
- Preliminary design
- Detailed design and Testing

Paper presented at the Symposium on “Applied Aerodynamics and Design of Aerospace Vehicle (Sarod 2011)” held on 16-18 November 2011 at Bangalore, India
Flight test

At ADE, the configuration and UAV system design are reviewed and refined through Peer Review, Preliminary Design Review (PDR), Critical Design Review (CDR) and Flight Readiness Review (FRR) before first flight.

The design of Lakshya and Nishant have been carried out extensively using engineering methods, wind tunnel testing and then finally with flight tests. In recent years CFD has matured as a better tool for aerodynamic analysis to provide valuable inputs to UAV design.

Rustom-II

The aircraft design is always dictated by the mission requirements. The main mission of reconnaissance and surveillance MALE UAV is to have wider coverage area for maximum time. This leads to high altitude and endurance requirements. Typical design requirements that have been considered for Rustom-II configuration are given in Table-1.

The major design drivers of Rustom-II are given in Table-2. Apart for normal aerodynamic shapes, the operational mission of UAV calls for carrying various external payloads which do not have proper aerodynamic shapes. Hence the payload drag has been obtained from wind tunnel testing. The design of Rustom-II has been carried out with weight estimation, airfoil design, wing and empennage sizing. Based on the preliminary studies, the AUW of aircraft is estimated to be 1800 kg. Based on the performance requirements, Rotax-914 engine is chosen to propel the aircraft. Several configuration options such as conventional tail/T-tail/V-tail, Tractor/Pusher type of power-plant, Conventional/Twin-boom type of configuration, Twin engine/Single engine, etc. were considered. The various concepts and configurations considered for the UAV during the conceptual design phase is shown in Fig.3.

Wing Sizing and Airfoil Design

Aerodynamic Analysis of Rustom-II

The aerodynamic analysis of Rustom-II has been carried out with various engineering methods, CFD and wind tunnel tests. Initially various layouts like tractor and pusher configurations with Conventional Tail, T-Tail and V-Tail configurations were considered for the UAV. After wind tunnel tests in IISc Open Circuit Wind Tunnel (Fig.7a), the tractor configuration with T-Tail was chosen based on the better aerodynamic characteristics.

The aerodynamic characteristics of the payloads are also established both by CFD and wind tunnel testing at IISc OCWT wind tunnel (Fig.7b). With the data obtained from the various wind tunnel tests and CFD analysis, the design is progressing with first flight scheduled in the near future. The air vehicle configuration of Rustom-II under development is shown in Fig.8.

Table-1: Design Requirements for Rustom-II

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Ceiling</td>
<td>32,000 ft</td>
</tr>
<tr>
<td>Max Operating Altitude</td>
<td>30,000 ft</td>
</tr>
<tr>
<td>Endurance</td>
<td>About 24 hrs</td>
</tr>
<tr>
<td>Cruise Speed</td>
<td>125-175 kmph</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>Not less than 225 kmph</td>
</tr>
<tr>
<td>Stall Speed</td>
<td>Not more than 110 kmph</td>
</tr>
<tr>
<td>Max. TO Altitude</td>
<td>11,000 ft</td>
</tr>
</tbody>
</table>

Table-2: Rustom-II Design Drivers

<table>
<thead>
<tr>
<th>Design Driver</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Ceiling</td>
<td>Engine Power, Propeller Efficiency, Drag, Aircraft Weight</td>
</tr>
<tr>
<td>Endurance</td>
<td>Fuel Capacity, Engine, High AR Wing</td>
</tr>
<tr>
<td>Maximum Speed</td>
<td>Engine Power, Drag</td>
</tr>
<tr>
<td>Stall Speed</td>
<td>Wing Loading, $C_{L_{max}}$</td>
</tr>
<tr>
<td>Take-off Altitude</td>
<td>Engine Power, $C_{L_{max}}$</td>
</tr>
<tr>
<td>Take-off Distance</td>
<td>Engine Power, $C_{L_{max}}$</td>
</tr>
<tr>
<td>Landing Distance</td>
<td>$C_{L_{max}}$</td>
</tr>
</tbody>
</table>

The aerodynamic characteristics of newly designed airfoil ADE-LS-E2 is verified (Fig.5) with wind tunnel tests and proven for its better performance (Fig.6).
Rustom-I

Rustom-I is a Technology Demonstrator UAV that was converted to UAV from a manned aircraft configuration. Generally UAV requires well designed airframe and systems like avionics, control system and telemetry. As a concurrent engineering concept (Fig.9), a well proven airframe was used to test the aircraft avionics and control system. The proven aircraft systems can be used for the new airframe that is being designed. The details of the changes made to LCRA are provided in Table-3.

Several changes were made to the original aircraft Light Canard Research Aircraft (LCRA) viz. installation of more powerful engine to increase climb performance, increase of fuel capacity to enhance endurance and removal of canopy for drag reduction. CFD analyses (Fig.10) were carried out to study the various issues such as:

- Effect of mounting antenna on R-I canopy.
- Effect of fuselage modification on the aerodynamic characteristics of R-I.
- Effect of mounting EO Payload on drag and intake mass flow.
- Air brake requirements.
- Air data sensor calibration to estimate the K_{ha} of the static port.
- Study of Air intake mass flow

| Table-3 : Major Changes Between LCRA A/C and Rustom-I UAV |
|---------------------------------|----------------|----------------|
| Parameter | LCRA | Rustom-I |
| Engine | Lycoming o-235 | Lycoming o-320 |
| BHP | 116 HP | 160 HP |
| Propeller | Bruce tiff | Sencinich |
| Prop Dia | 1.57 m | 1.73 m |
| A/C Weight | 650 kg | 780 kg |
| Fuel Capacity | 200 liter | 320 liter |
| Canopy | Bulbous | Faired flat |
| GPA | No | Yes |
| Antennae | No | Yes |

Mini UAV Imperial Eagle

The hand launched man portable Mini UAVs are useful for obtaining short range intelligence with short turnaround time for carrying out the operation. They are very useful for Low Intensity Conflict and Battle Field Surveillance for on-field soldiers. The initial design requirements for man portable mini UAV are shown in Table-4.

| Table-4 : Design Requirements/Targets for Imperial Eagle |
|---------------------------------|----------------|
| Parameter | Specification |
| Length | 1.0 - 1.4 m |
| Wing Span | 1.3 - 1.6 m |
| Speed | 40 - 90 kmph |
| Ceiling | 15,000 ft (4572 m) |
| Operating Altitude AGL | 30 m to 300 m |
| Endurance | 50 - 60 minutes |
| Propulsion | Electric motor |
| Launch | Hand Launched |
| Payload | EO/IR Camera |

After a detailed study about the mission and system requirements, the AUW of Mini UAV is estimated to be about 2.3 kg. Unlike other UAVs, it does not have a specific altitude as operating altitude. The operating altitude varies from sea level to 14,000ft MSL. Thus stall speed has been chosen for wing sizing criteria. A well established catalogue low Reynolds Number airfoil E214 is chosen for wing due its better endurance parameter $C_l^{1.5}/C_D$ at the operating C_l (Figs.11 and 12). As the flight test of low cost RC model is cheaper than the wind tunnel testing here the configuration was flight tested even before wind tunnel testing. The design is refined with both flight tests and wind tunnel testing. The design philosophy followed for Mini UAV design is illustrated in Fig.13. The fuselage is sized and shaped to accommodate all the equipments effectively. The low conventional tail is chosen to avoid the tail being in the downwash of wing. The COTS motor AXI-2826/12 with 12 x 8 propeller is chosen to propel the UAV based on performance requirements. The finalised configuration is shown in Fig.14.

The aerodynamic analyses have been carried out with VLM and CFD. The UAV has been initially flight tested.
Role of CFD in Aerodynamic Analysis of UAV

Engineering tools offer a good first-cut estimate to design problems. Classical approach to arrive the base line configuration using empirical and analytical methods is being used during the conceptual design phase. Many engineering and analytical tools are used for design and analysis during this phase. With the advent of high-speed computers, CFD has risen into prominence as one of the major tools used in the design process. Gone are the days when CFD was used when the configuration was sufficiently frozen. Now, we have risen to a level where we are able to integrate CFD into the design process. The following case studies will be covered.

- Validation of CFD approach with existing configuration
- Study of Roll Effectiveness of LGB Sudarshan
- Stores Separation Studies
- Minor modification of UAV Configurations
- Study of ground effect

Validation of CFD Approach

The CFD methodology has been validated with the existing database of Lakshya and Nishant configurations which have provided good confidence in CFD methodology adopted in carrying out the aerodynamic analysis (Fig.15).

Study of Roll Effectiveness of LGB

CFD studies had been carried out on the LGB Sudarshan configuration in order to determine the reason for roll ineffectiveness of canard. For canard deflection cases for e.g., $\delta = -12^\circ$ case, the canard wake and trailing vortices interact with the Sudarshan flow field to change the pressure distribution both along the body and on the tail fins. The downwash of the deflected canards produces differential pressure on the starboard and port side of the Sudarshan ($\phi = 0$) that in turn produces a induced side force. In addition, the canard trailing vortices interact with the fins until α is high enough so that the vortices miss the rear fins. The differential pressure on the rear fins due to canard vortices is primarily responsible for the adverse roll effects. Flow interaction effects are similar for $\phi = 22.5^\circ$ and $\phi = 45^\circ$ cases also. The mesh generated is shown in Fig.16 and the contours of the vortices from canards are shown in Fig.17.

Store Separation Studies

Estimation of separation trajectories of external stores is an important task in the aerodynamic design area having an objective to define operational release envelopes. To define the flight envelope a very large number of store trajectory simulations are required to study the effect of parameters like flight speed, angle of incidence, altitude, store carriage location, presence of neighboring stores etc. on the carriage and release of stores. The store trajectory estimation technique should not only provide accurate results with quick turnaround time, but also be robust in terms of complexity of configuration and range of flight conditions.

A Cartesian grid based Euler code-PARAS coupled with trajectory evaluation module (a 6-DOF time integration module) developed at ADA has been used to estimate the separation trajectory of an external store from Jaguar fighter aircraft (Fig.18). The computed store trajectory results are validated with flight tests and found to be in good agreement (Fig.19).

Incremental Effect of External Payloads

The UAV mission revolves around the successful functioning of external payloads. It is inevitable to carry external payload with non-aerodynamic shape. The incremental change in aerodynamic characteristics due to payloads can be effectively studied using CFD. The incremental drag and moments due to 3-in-1 antenna on Nishant was studied using CFD analysis (Fig.20).

Study of Ground Effects

Aerodynamic characteristics of the UAV in presence of ground were established by using CFD and engineering methods. The RANS solver was used for ground effect prediction and shown in Figs.21 and 22.

Conclusion

The experiences of design of various UAVs at ADE over the decades have helped in refining the methodology of UAV design. The well evolved procedures ensure that best possible configuration is arrived effectively. While the final aero data is still being generated with large
number of wind tunnel testing, the major portion of aero-
dynamic analysis is being carried out using CFD which
helps in reducing design cycle time and provide valuable
input to designers.

References
1. Jan Roskam, "Airplane Design", Parts-I to VII, DAR
Corporation, 2002.
proach", AIAA Education Series, AIAA, Washing-
ton DC, 1992.
3. "Rustom MALE UAV Configuration Design", ADE
Internal Document.
4. Torenbeek Egbert, "Synthesis of Subsonic Airplane
DATCOM," Air Force Wright Aeronautical Labora-
6. "Engineering Sciences Data Unit" (ESDU Sheets).
8. Anderson, J.D., "Computational Fluid Dynamics:
Computational Aerospace Sciences Laboratory, 1996.
10. Marnix F.E. Dillenius, et al., Extension of the
Method for Predicting Six-DOF Store Separation
Trajectories at Speeds up to the Critical Speed to
Include a Fuselage with Noncircular Cross-section:
Vol-I and II", Nielsen Engg. and Research, Inc.,
November, 1974.
13. Perkins, C.D. and Hage, R.E., "Airplane Perform-
15. Abbott, Ira H. and Von Doenhoff Albert E., "Theory
16. Riegels, F.W., "Aerofoil Sections", Translated from
German by D. G. Randall, Butterworths, London,
1961.
17. Nielsen, J.N., "Missile Aerodynamics", McGraw-
Fig. 18 Pressure Distribution Over an A/C Store Configuration

Fig. 19 Release of Sudarshan from Jaguar Aircraft Using on Board High Speed Camera

Fig. 20 CFD Analysis of Nishant

Fig. 21 Pressure Distribution Over an Aircraft and Ground During Ground Run

Fig. 22 Effect of Height on C_L of Aircraft

Fig. 23 CFD Analysis of Nishant