Main Article Content

Abstract

The aerodynamic performance characteristics of a small unmanned aerial vehicle wing are evaluated computationally at a moderate Reynolds number of Re = 2.8 x 105. The flow exhibits laminar-turbulent transition and features a laminar separation bubble that exists for a substantial portion of the wing span. The flow near the wing tip is three-dimensional and exhibits complex flow patterns due to the interaction of the wing tip vortex with the laminar separation bubble. A series of systematic parametric studies are conducted by varying the wing geometric parameters like the span of the rectangular inboard wing, sweep of the outboard wing and wing dihedral angle. From the parametric studies, it is found that the wing with an outboard sweep of 17° has a 4.54 % improvement in endurance factor compared to the baseline wing at an angle of attack of 5°. The drag of this wing is 19.2 drag counts lower compared to the baseline wing. Further, flow transition is delayed for this wing. The present results show that wing sweep has a significant influence on the improvement of aerodynamic performance of unmanned aerial vehicle wings at moderate Reynolds numbers.

Keywords

Unmanned Aerial Vehicle, Moderate Reynolds Number, Wing Sweep, Boundary Layer Transition, Laminar Separation Bubble

Article Details

How to Cite
Patel, K. R., Rao, K. S., & Sivapragasam, M. (2023). Aerodynamic Performance of an Unmanned Aerial Vehicle Wing For Varied Wing Geometric Parameters. Journal of Aerospace Sciences and Technologies, 75(3), 270–289. https://doi.org/10.61653/joast.v75i3.2023.888

References

  1. Austin, R., "Unmanned Aircraft Systems", Wiley, Chichester, 2010.
  2. Vohra, D. S., Garg, P. K. and Ghosh, S. K., "Usage of UAVs/Drones Based on their Categorisation: A Review", Journal of Aerospace Sciences and Technologies, Vol.74, pp.90-101, 2022.
  3. Gundlach, J., "Designing Unmanned Aircraft Systems: A Comprehensive Approach", AIAA, Reston, 2012.
  4. Mueller, T. J. and DeLaurier, J. D., "Aerodynamics of Small Vehicles", Annual Review of Fluid Mechanics, Vol.35, pp.89-111, 2003.
  5. Limaye, M., "UAVs -The Indian Road Map for Development", Journal of Aerospace Sciences and Technologies, Vol.56, No.4, November 2004, pp.199-206.
  6. Krishnan, P. S., "Trends in UAV Platforms and Technologies", Journal of Aerospace Sciences and Technologies, Vol.61, No.1, February 2009, pp.22-31.
  7. Balachandran, N., "UAV Design and Configuration Aerodynamics - An ADE Experience", Journal of Aerospace Sciences and Technologies, Vol.64, No.3, Auguat 2012, pp.161-168.
  8. Srikumar, P., "Unmanned Aircraft Systems: Challenges and Opportunities", International Journal of Advances in Engineering Sciences and Applied Mathematics, Vol.6, pp.195-202, 2014.
  9. Rangan, V.A. and Jain, M., "Indian UAV: Past, Present and Future, Journal of Aerospace Sciences and Technologies, Vol.69, No.1A, February 2017, pp.138-146.
  10. Prasad, K. R., "Unmanned Aerial Vehicles - The Aspirations of the Indian Army for Multifarious Employment in the Future High Technology Battle Field Landscape", Journal of Aerospace Sciences and Technologies, Vol. 71, No.1A, February 2019, pp.194-198.
  11. Dasgupta, S., "Emerging frontiers for Development of Military UAVs: An Indian Perspective", Journal of Aerospace Sciences and Technologies, Vol.71, No.1A, February 2019, pp.126-134.
  12. Tani, I., "Low-Speed Flows Involving Bubble Separations", Progress in Aerospace Sciences, Vol.5, pp.70-103, 1964.
  13. Carmichael, B. H., "Low Reynolds Number Airfoil Survey", NASA CR-165803, 1981.
  14. Horton, H. P., "Laminar Separation Bubbles in Two and Three Dimensional Incompressible Flow", Ph. D. Thesis, University of London, 1968.
  15. Gaster, M., "The Structure and Behaviour of Laminar Separation Bubbles", Aeronautical Research Council Reports and Memoranda 3595, 1967.
  16. Shyy, W., Lian, Y., Tang, J., Viieru, D. and Liu, H., "Aerodynamics of Low Reynolds Number Flyers", Cambridge University Press, Cambridge, 2008.
  17. Counsil, J. N. N. and Boulama, K. G., "Low- Reynolds-Number Aerodynamic Performances of the NACA 0012 and Selig-Donovan 7003 Airfoils", Journal of Aircraft, Vol.50, pp.204-216, 2013.
  18. Gupta, A. K., Narayana, P. A. A. and Ramesh, G., "Numerical Validation of Low Reynolds Number Airfoil For UAV", Journal of Aerospace Sciences and Technologies, Vol.70, No.3, August 2018, pp.164-174.
  19. Pranesh, C., Sivapragasam, M., Deshpande, M. D. and Narahari, H. K., "Negative Lift Characteristics of NACA 0012 Aerofoil at Low Reynolds Numbers", Sadhana, Vol.44, Article ID 0021, 2019.
  20. Bhairappanavar, M. I., Kulkarni, V. M. and Balaraman, P., "Aerofoil Design and Boundary Layer Transition Flow Studies at Subsonic Speeds for a Typical Transport Aircraft", Journal of Aerospace Sciences and Technologies, Vol.72, No.1, February 2020, pp.9-22.
  21. Priyanka, R. and Sivapragasam, M., "Multi-Fidelity Surrogate Model-Based Airfoil Optimization at a Transitional Low Reynolds Number", Sadhana, Vol.46, Article ID 0058, 2021.
  22. Marchman, III, J. F. and Abtahi, A. A., "Aerodynamics of an Aspect Ratio 8 Wing at Low Reynolds Numbers", Journal of Aircraft, Vol.22, pp.628-634, 1985.
  23. Bastedo, Jr. W. G. and Mueller, T. J., "Spanwise Variation of Laminar Separation Bubbles on Wings at Low Reynolds Numbers", Journal of Aircraft, Vol.23, pp.687-694, 1986.
  24. Huang, R. F. and Lin, C. L., "Vortex Shedding and Shear-Layer Instability of Wing at Low-Reynolds Numbers", AIAA Journal, Vol.33, pp.1398-1403, 1995.
  25. Torres, G. E. and Mueller, T. J., "Low-Aspect-Ratio Wing Aerodynamics at Low Reynolds Numbers", AIAA Journal, Vol.42, pp.865-873, 2004.
  26. Yen, S. C. and Huang, L. -C., "Flow Patterns and Aerodynamic Performance of Unswept and Swept- Back Wings", Journal of Fluids Engineering, Vol.131, 111101.
  27. Ananda, G. K., Sukumar, P. P. and Selig, M. S., "Measured Aerodynamic Characteristics of Wings at Low Reynolds Numbers", Aerospace Science and Technology, Vol.42, pp.392-406, 2015.
  28. Genç, M.S., Özkan, G., Özden, M., Kiris., M. S. and Yildiz, R., "Interaction of Tip Vortex and Laminar Separation Bubble over Wings with different Aspect Ratios under Low Reynolds Numbers", Proceedings of Institution of Mechanical Engineers Part C, Journal of Mechanical Engineering Science, Vol.232, pp.4019-4037, 2018.
  29. Toppings, C. E., Kurulek, J. W. and Yarusevych, S., "Laminar Separation Bubble Development on a Finite Wing", AIAA Journal, Vol.59, pp.2855-2867, 2021.
  30. Cosyn, P. and Vierendeels, J., "Numerical Investigation of Low-Aspect-Ratio Wings at Low Reynolds Numbers", Journal of Aircraft, Vol. 3, pp. 13-722, 2006.
  31. Chen, Z. J., Qin, N. and Nowakowski, A. F., "Three- Dimensional Laminar-Separation Bubble on a Cambered Thin Wing at Low Reynolds Numbers", Journal of Aircraft, Vol.50, pp.152-163, 2013.
  32. Chen, P. W., Bai, C. J. and Wang, W. C., "Experimental and Numerical Studies of Low Aspect Ratio Wing at Critical Reynolds Number", European Journal of Mechanics B/Fluids, Vol.59, pp.161-168, 2016.
  33. Karasu, I., Özden, M. and Genç, M. S., "Performance Assessment of Transition Models for Three-Dimensional Flow over NACA4412 Wings at Low Reynolds Numbers", Journal of Fluids Engineering, Vol140, Article ID 121102, 2018.
  34. Wauters, J., Degroote, J. and Vierendeels, J., "Comparative Study of Transition Models for High Angle of Attack Behavior", AIAA Journal, Vol.57, pp.2356-2371, 2019.
  35. Chen, L., Guo, Z., Deng, X. and Hou, Z., "Aerodynamic Performance and Transition Prediction of Low-Speed Fixed-Wing Unmanned Aerial Vehicles in Full Configuration Based on Improved g-Reqt Model", Aerospace Science and Technology, Vol.107, Article ID 106281, 2020.
  36. Selig, M. S., Donovan, J. F. and Fraser, D. B., "Airfoils at Low Speeds", H. A. Stokely, Virginia, 1989.
  37. Menter, F. R., "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications", AIAA Journal, Vol.32, pp.1598-1605, 1994.
  38. Langtry, R. B. and Menter, F. R., "Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes", AIAA Journal, Vol.47, pp.2894-2906, 2009.
  39. Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G. and Völker, S., "A Correlation Based Transition Model Using Local Variables Part 1: Model Formulation", Journal of Turbomachinery, Vol.128, pp.413422, 2006.
  40. Langtry, R. B., Menter, F. R., Likki, S. R., Suzen, Y. B., Huang, P. G. and Völker, S., "A Correlation Based Transition Model Using Local Variables Part 2: Test Cases and Industrial Applications", Journal of Turbomachinery, Vol.128, pp.423434, 2006.
  41. Schlichting, H. and Gersten, K., "Boundary Layer Theory", Ninth Edition, Springer-Verlag, Heidelberg, 2017.
  42. Barlow, J. B., Rae, W. H. Jr. and Pope, A., "Low- Speed Wind Tunnel Testing", Third Edition, Wiley- Interscience, New York, 1999.
  43. Kelecy, F. J., "Coupling Momentum and Continuity Increases CFD Robustness", ANSYS Advantage, Vol.II, pp.49-51, 2008.
  44. Darwish, M., Sraj, I. and Moukalled, F., "A Coupled Finite Volume Solver for the Solution of Incompressible Flows on Unstructured Grids", Journal of Computational Physics, Vol.228, pp.180-201, 2009.
  45. Celik, I. B., Ghia, U., Roache, P. J., Freitas, C. J., Coleman, H. and Raad, P. E., "Procedure for Estimation of Uncertainty due to Discretization in CFD Applications", Journal of Fluids Engineering, Vol.130, Article ID 078001, 2008.
  46. Kim, D. H., Chang, J. W. and Chung, J., "Low- Reynolds-Number Effect on Aerodynamic Characteristics of a NACA 0012 Airfoil", Journal of Aircraft, Vol.48, pp.1212-1215, 2011.
  47. Lighthill, M. J., "Introduction: Boundary Layer Theory", in "Laminar Boundary Layers", Edited by L. Rosenhead, Clarendon Press, Oxford, 1963.
  48. Tobak, M. and Peake, D. J., "Topology of Three-Dimensional Separated Flows", Annual Review of Fluid Mechanics, Vol.14, pp.61-85, 1982.
  49. Perry, A. F. and Chong, M. S., "A Description of Eddying Motions and Flow Patterns Using Critical- Point Concepts", Annual Review of Fluid Mechanics, Vol.19, pp.125-155, 1987.
  50. Patel, K. R., "Effect of Planform Parameters on the Aerodynamic Characteristics of an Unmanned Aerial Vehicle Wing at Low Reynolds Number", M. Tech. Thesis, M. S. Ramaiah University of Applied Sciences (MSRUAS), Bangalore, 2021.